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Individual kinetic parameters

 We assume the error between observed concentrations       at times       and the 

predicted values by the theoretical model                   follows an additive normal 

distribution with an heteroscedastic error variance model. The model involves 

parameters denoted     . 

 If the errors are independent at two different times, then the likelihood function 

evaluated over the      sampling points can be written as: 

(1)

and    are      -dimensional vectors with components       and                 , 

respectively.      is the      -order diagonal matrix of error variances.

 The maximum likelihood estimate (MLE)     is the value of     that gives the 

particular observation      the higher probability of occurrence. MLE is consistent 

and asymptotically efficient and Gaussian, i.e.,     is distributed normally around 

the true value       as: 

(2)

where     is the covariance matrix of estimates, given by the inverse of the 

expected information matrix, and provides a measure of estimation precision.

 Over the     available individuals, MLE leads to the training data that are  

estimates and     precisions.
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Kernel Density Estimation 

 The ordinary kernel estimation of prior pdf           is given by:

(3)

The kernel function       with bandwidth     is defined by                                   .

 The basic idea of the present study is to use the training data [3] and:

1. center kernels at the individual estimates     ,

2. allow the bandwidth of the kernels to vary from one individual to another according 

to       which is associated with the reliability to each estimate. 

 Because of (2), the Gaussian kernel is used. Therefore, the bandwidth should depend 

on the individual precision of estimates    , i.e., .      is the new bandwidth.

 To allow smoothing equally scaled in all directions by a single    , the data were “pre-

whiten” by the covariance matrix       which expresses the dispersion of individuals 

weighed by      . This involves the following:

1. Obtain        the Choleski factor of       , i.e.,                   .

2. Transform       to        by        .

3. Compute the covariance matrix      of       . 

 The final form of (3) is:

(4)

with                      . The matrices     embody individual precision (originated from intra-

individual variability and measurement errors), and gives the same importance in all 

directions of the parameter space. 
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Selecting optimal bandwidth

 The choice of the bandwidth     in the relationship (4) is critical in terms of performance 

when implementing kernel approaches.

 The mean integrated squared error (MISE) measures the distance between the 

estimated       and the unknown density          . The optimal bandwidth      minimizes 

MISE. Bandwidth selectors proceed on an approximated MISE obtained under 

asymptotic conditions [1,2]. 

 The implemented selector is the least-squares cross-validation procedure [1]. The basic 

principle is to construct the approximated MISE from the data themselves (Jackniffe) 

and evaluate it over a grid of     values.
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Simulation study

 One compartment model with            parameters, volume of distribution and 

clearance. Reference interindividual distribution: mixture of multivariate normal 

and log-normal distributions:

with 

 individuals were drawn. Each individual randomly received 2, 5, 7, 10, 

or 20 mg of drug given by infusion during 0.5, 1, 2, or 3 h (randomly associated). 

Three different sampling protocols of size              were randomly associated to 

individuals. Simulated concentrations were disturbed by heteroscedastic

measurement errors with CV of 5, 10, or 15% (randomly associated to each 

kinetic profile). 

 From the disturbed kinetic profiles, PK parameters were obtained using MLE and 

a quasi-Newton optimization routine. The training data are .
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 Variable number of individuals in the data base was considered: .

 Grid of 200    values in the range   0.1:0.4 for cross validation.

 350 individuals describe reliably the data (subplot 1).

 Optimal bandwidth                    for                   (subplot 2).

 3D plot of the reference distribution              (subplot 3).

 3D plot of the estimated distribution                  (subplot 4). sxf ˆ; ˆ
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 Single- and two-stage methods intended to process data for PK/PD population studies. Single-stage methods (nonlinear mixed effect models) process on raw data to estimate population

characteristics. Two-stage methods performs PK/PK modeling in the first stage leading to the training data and these are processed within the statistical model in the second stage.

 Both methods are associated to parametric or nonparametric approaches for the statistical description of data.

 Two-stage methods require extensive sampling and fail to combine correctly the variabilities underlying the data.

 Describe the interindividual variability by means of a multivariate probability density function (pdf) using a two-stage nonparametric procedure.

 Our proposal (1) enables incorporating the residual variability (including intra-individual variability and measurements errors) and out-performs the traditional two-stage method, which

ignores residual variability and overestimates random effects; (2) improves performances of the multivariate ordinal kernel density estimation; (3) selects the optimal bandwidth in the sense

of the minimum approximated mean integrated squared error.
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 Both residual and interindividual variability are incorporated in the proposed nonparametric approach. The optimal bandwidth in the kernel pdf estimator is determined. From a practical point

of view, the method is easy to implement and quick for data processing. In order to achieve validation, the performances of this new estimator must be compared to other kernel procedures.

 Since contaminated data are considered, one should also develop the deconvolving kernel estimator [4]. This estimator need very challenging theoretical analysis and the practical

computation is time consuming: it is under investigation.
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